

PRODUCT INFORMATION Deoxyribonuclease I (DNase I)

Product:	Deoxyribonuclease I (DNase I)	
Grade:	Molecular Biology Grade	
Code:	PC0704-25mg / 50mg / 100mg	
Molecular Weight:	31,000 Daltons	
Lot No.:		
Expiry Date:		

Description

DNase I is an endonuclease derived from bovine pancreas that will degrade double-stranded DNA and produce 3'-OH oligonucleotides in the presence of divalent cations. In the reaction solution, with the presence of Mg^{2+} helps the enzyme to produce nicks in double-stranded DNA, while with the presence of Mn^{2+} , DNase I cleaves both strands of the DNA. DNase I is also useful in nick translation for introducing single-stranded nicks that serve as primer sites for initiation of DNA synthesis and for cloning random DNA fragments by cleaving double-stranded DNA.

DNase I is offered as lyophilized powder with an activity of 500 Kunitz U/mg and is a chromatographically pure preparation. For greatest stability, DNase I is suggested to be dissolved at a concentration of **at least 1mg/ml in 50% glycerol with 20mM Tris-HCl, pH7.5, and 1mM MgCl**₂. This solution can be stored at - 20°C for at least a year.

Unit Definition

One unit of DNase I is defined as the amount required to completely degrade 1µg of lambda DNA in 10 minutes at 37°C in 50µl of a buffer containing 40mM Tris-HCl (pH8.0), 2.5mM (up to 10mM) MgSO4, 1mM (up to 10mM) CaCl2. Under these assay conditions one unit of DNase activity is approximately equal to one Kunitz unit.

v*i*vant*i*s

Storage Temperature:

Store at -20°C. Avoid exposure to frequent temperature changes. See the expiration date on the stickers of product item.

Storage Buffer:

50% glycerol solution, 20mM Tris-HCl pH7.5, and 1mM MgCl₂. Concentration of stock solutions will vary depending on application.

Recommended 1x Reaction Buffer

40mM Tris-HCl pH8.0, 2.5mM (up to 10mM) MgSO₄, 1mM (up to 10mM) CaCl₂

Note:

*If starting material contains EGTA, EDTA or other chelating reagents, and/or high concentration of salts, higher concentration of Mg and Ca are recommended.

**DNase I is sensitive to physical denaturation. Gently mix preparations by inversion; do not vortex.

Heat Inactivation

Incubate samples at 65°C for 10 minutes. To protect RNA from being degraded during DNase I inactivation, add EDTA to a final concentration of 5mM.

Requirement

Ca²⁺ and Mg²⁺ or Mn²⁺

Inhibitors

EGTA; EDTA; salt concentrations>100mM will reduce DNase activity

Stop Solution 20mM EGTA (pH8.0)

v*i*vant*i*s

Procedure

1. For each 1µg of nucleic acid to be DNase I treated, prepare the reaction mix below:

Components	<u>Volume</u>
1X Reaction Buffer	49µL
DNase I Solution (1U/µL)	1µL
Nucleic Acid	1µg

- 2. Gently mix the reaction until the mixture is completely well mixed.
- Incubate at 37°C for 10-15 minutes.
 *Incubation time may be increased to 30 minutes for removal of genomic DNA.
- 4. To stop the reaction, add 1µl of Stop Solution to bind calcium and magnesium ions and to inactivate the DNase I. Heat at 70°C for 10 minutes to denature both the DNase I and the RNA.
 *The Stop Solution (20mM EGTA) must be added before heating to prevent metal (Ca/Mg) ions catalyzed hydrolysis of the RNA. This product should not be used for digestion longer than 15 minutes or for digestion at temperature higher than 37°C, or the residual contaminating RNase activity will begin to degrade the RNA.

Usage Notes

- 1. This DNase I does not contain an RNase inhibitor.
- 2. Under different buffer conditions, the amount of DNase I required to completely digest a given amount of DNA may need to be empirically determined. For example, salt concentrations >100mM will reduce DNase activity.